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I. Phys. A: Math. Gen. 28 (1995) 4553-4564. Printed is the UK 

Isomorphisms between quantum group covariant 
q-oscillator systems defined for q and 4-l 

N Aizawa 
Depanment of Applied Mathematics, Osaka Women’s UniversiIy. Sakai, Osaka 590, Japan 

Received 20 February 1995 

Abstract. It is shown that there exists an isomorphism berween q-oscillator systems covariant 
underSUq(n) and XIq-, (n). Bytheisomorphism.thedefiningrelati~nsofaSU~.~(n) covarian1 
q-oscillator system are hmsmuted into those of SU&. It is also shown that a similar 
isomorphism exists for the system of q-oscill?tors covariant under the quantum supergmup 
SU, (n /m) .  Furulermore, the cases of qdefomed Lie (super)dgebras constructed from covariant 
q-oscillator systems are considered. The isomorphisms between q-deformed Lie (super)algebras 
cannot be obtained by the direct generalization of the isomorphism for covariant q-oscillator 
systems. 

1. Introduction 

Since the discovery of quantum deformation (the so-called q-deformation) of Lie groups and 
Lie algebras [1-51, many q-deformed objects have been introduced. For example we can 
mention the y-deformed hyperplane [6], differential forms and derivatives on the q-deformed 
hyperplane [7], q-(super)oscillators [S, 91, q-deformed covariant oscillator systems [IO-lS] 
and their generalization [14], q-symplecton [12,15], reflection equation algebras [16], and 
so on. Almost all of these objects are essentially defined by the same algebraic structure, that 
is, Zamolodchikov-Faddeev algebra [17] or quantum-,goup tensor 1181. Needless to say, 
tensors are fundamental quantities in physics. If q-deformed theories describe nature, then 
quantum-group tensors can also be fundamental quantities. If so, we will have one, or more, 
fundamental physical constants, i.e. deformation parameter@. y-deformed objects may be 
regarded as ‘functions’ of deformation parameters. However, the relationship between q- 
deformed objects defined for different values of the deformation parameter q is unclear. 
This could be an important problem when physical applications of quantum-group tensors 
are considered. 

This problem has been discussed for the q-oscillator Hq = (a, af , N} in two publications 
[19,20]. Both authors found that the central element of H,, plays a crucial role when we 
consider two q-oscillator algebras defined for different values of the deformation parameter. 
In [19], Chaichian et nl derived the formula which transforms the elements of Hq to the 
corresponding elements of Hq, based on the assumption that the element N and the central 
element are independent of y. Without such an assumption, in this paper we discuss the 
special case of the problem, that is, the relationship between Hy and H q p .  Chaichian et al 
found the one-to-one correspondence between the elements of Hq and HS-i which transmute 
the defining relations of Hq-l into those of Hq [ZO]. The elements of Hq-i can be expressed 
in terms of those of H,,; therefore, we can say that the algebra Hq is invariant under the 
replacement q i+ q-’. In mathematical language, Hq is isomorphic to Hq-z. 

0305-4470/95/164553+12$1950 @ 1995 IOP Publishing Ltd 4553 



4554 N Aizawa 

In this paper we discuss the relationship between two q-deformed algebras defined for 
q and q-’. This is the simplest case of the general problem of the relationship between 
q-deformed algebras defined for different values of deformation parameters. Furthermore, a 
Drinfeld-limbo deformation of Lie algebra is believed to be invariant under the replacement 
q ++ q-’. For example, {J*, Jo] and {J*, .&I denote the generators of Uy(s1(2)) and 
U,,-, (sL(2)), respectively, then J, = &, CY = i, 0. This result holds even when the 
U,(sl(Z)) is embedded into the direct product of two q-oscillators, Hy @ Hy [20]. Such 
explicit relations are not yet known either forthe quantum group SUq(2) = Funcy(SU(2)), 
which is dual to U,(sl(Z)), or for any quantum-group tensors. Such explicit relations may 
provide a new symmehy of the q-deformed theories under the replacement of q cz q-l. 
As for the representation theory, our consideration will be a hint on how to construct new 
representations of q-deformed Lie algebras and is mentioned in the final part of the next 
section. 

The q-deformed algebras discussed in this article are: (i) q-oscillator algebra which is 
covariant under the action of the quantum group SUq(n), (ii) q-oscillator algebra which 
is covariant under the quantum super group SU,(n/m), (iii) q-deformation of the Lie 
algebra u(n) constructed from (i), and (iv) q-deformation of the Lie super algebra u(n /m)  
constructed from (ii). The algebras (ii) and (iv) are also covariant under the action of the 
SUy(n) and SUY(n/m), respectively. The latter two cases are applications of the results 
obtained in the former two cases, since it is natural to consider the embedding of deformed 
Lie algebras into the q-deformed oscillator algebras. 

This paper is organized as follows. In the next section, we briefly review our previous 
result on the q-oscillator algebra Ifq. In section 3 it will be shown that, between SU,(n) and 
SU,,-I covariant q-oscillator systems, there exists the same isomorphism as for the case of 
Hy. By the isomorphism, the defining relations of the SU,-I (n) covariant q-oscillator system 
are transmuted into those of SU,(n). A q-deformation of u(n) will be constructed from 
the SU,(n) covariant q-oscillator system in section 4. The obtained q-deformed algebra 
is differerent from the well known Drinfeld-limbo deformation of u(n). Unfortunately, 
the isomorphisms between covariant q-oscillator systems are not applicable in establishing 
a similar isomorphism between q-deformed Lie algebra. In section 5 similar results will 
be obtained for SU,(n/m) covariant q-oscillator system and q-deformed Lie super algebra 
constructed from them. Section 6 is devoted to a discussion. 

2. Brief review of Biedenharn’s q-oscillator 

Before discussing q-oscillators which are covariant under quantum groups, let us briefly 
consider the case of the q-oscillator Hq introduced by Biedenham [SI. The algebra Hy is 
generated by three elements a, at, N and they satisfy the relations 

[ N ,  Ut] = ut [ N ,  U ]  = -a aut - qat, = q-”. (2.1) 

C = q - N ( [ N ]  -uta) (2.2) 

A central element of this algebra is given by 

where [NI = (q” - q-”)/(q - q-I). This algebra is defined for the deformation parameter 
q. We also define the q-oscillator defined for q-’; it is denoted by Hq-l and its elements 
are denoted by Z, ?it, m. The elements of Hq-x satisfy the same relation as (2.1) provided 
that q is replaced with q-’ in (2.1). It is possible to relate HY-i to Hy in the following way 
1201. 
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Proposition 2.1. There exists an isomorphism (0 : Hq + Hq.l such that (0 transmutes the 
defining relations of HY-1 into those of Hq. The explicit formulae are given by 

where F is a central element of Hq defined by 

F= l - (q -q - ’ )C .  (2.4) 

Proof. It is easy to verify, by direct calculation, that the defining relations of Hq-, are 
reduced to those of Hy by substituting relations (2.3) into the defining relations of Hq-l. 0 

As is widely known, n copies of Hs can realize the q-deformed u(n) introduced by 
Drinfeld and Jimbo. We can.also realize the q-deformed u(n) defined for q-I by making 
use of H p .  It should be emphasized that the realization in [SI must be modified when 
the central element (2.2) does not vanish. It has been shown [ZO] that both realizations 
are identical because of (2.3), namely, two q-deformed u(n)’s defined for q and 4-l are 
identical. The modified realization can give a new representation of the q-deformed u(n) 
in which the elements of representation matrices diverge in the limit of q + 1 [21]. 

3. SUq(n) covariant q-oscillator system 

In this section a q-oscillator which is covariant under the action of the quantum group 
SUq(n) is considered. In order to distinguish it from the n copies of H4, we call it the 
SClq(n) covariant q-oscillator system and denote it by d,,. The algebra 4 is generated by 
2n generators {Ai, AI, i = 1 , .  . . , n) and they satisfy the defining relations [lo-121 

We assume q E W, q > 1 hereafter. The *-anti-involution is introduced by 

(Ai)* =A! (At)* = A i .  (3.2) 
The q-annihilation operators and the q-creation operators are covariant and contravariant 
tensors of rank one under the co-action of SUq(n), respectively. This means that the 
transformations 

n n 

Ai + Ai = X f i j A j  At + A? = XfGA,’  (3.3) 

preserve the defining relations of d,, (3.1). Here rjj  E $U&) and we assume that rij 

commute with all the generators of d,,. The commutation relations of fij are written using 
the R-matrix 

k=l k=1 

RT @ T = (1 @ T)(T 8 l )R  (3.4) 
where T = ( r j j )  and the R-matrix is given by 
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where eij is the n x n matrix with entry 1 at position (i, j )  and 0,elsewhere. The *-anti- 
involution is defined by 

T' = (t') T*T = TT' = I 11 

where I is the n x n unit matrix. The quantum determinant, which is the central element 
of GLq(n),  is defined by deb T = zs(-q)l(u)tl,,cl). . . tn,,cn>, where I(o) is the minimal 
number of inversions in the permutation U .  We set det, T = 1. 

We also define the SUqp (n) covariant q-oscillator system 4-1 by replacing q with q-I 
in (3.1); they form rank one tensors under the action of SU,-,(n). We denote q-deformed 
objects defined for q-l by attaching a bar on their elements, e.g. Ay-( = { A i ,  i t i ] .  Our 
aim is to establish a relationship between 4 and 4.1. It should be noted that the trivial 
relation 2; = Ai, i t i  = At is prevented, since it concludes unacceptable results; AiAj = 0 
etc. 

It is possible to relate the elements of 4 and dqp so that the covariant q-oscillator 
system is invariant under q t-f q-I. 
Proposiiion 3.1. There exists an isomorphism 'p : 4 + A,p such that 'p transmutes the 
defining relations of Ay-' into those of 4. The explicit formulae are given by 

2; = rz21r,:1Ai A: = A)-L:lr~:l (3.6) 
- 

where 

r i - , / iZ i j i  ro-i (3.7) 

Pmof. Using the properties of ri we can prove the statement by direct calculations. Note 
that, using (3.1). ri (i # 0 )  is rewritten as 

ri is not affected by the *-anti-involution: rf = ri. From these facts we obtain the useful 
relations 

[ri, rji = o 
Air j  = qI;Ai  A j r j  = q-'r jA! i < j (3.9) 

[ A i ,  rj] = [AI, rj] = 0 i z j .  

As an illustration we take the last relation in (3.1): 
i-1 - 

i i i i  - q-'iYii = 1 -I- (4-' - 1) C A k & .  t -  (3.10) 
k=I 

Substituting (3.6) into (3.10) and multiplying Ti-lri from both left and right, we obtain 

Here the properties of ri (3.10) were used. Because of the identity 



Isomorphisms between quantum group covariant q-oscillator systems 4551 

(3.11) reads 

A ~ A , ~  - A ~ A ~  = r; = 1 + (q2 - 1) A ~ A ~ ,  
k=I 

Rearranging AIAi, we obtain the last relation in (3.1). 

of (3.12) reads 
The identity (3.12) is proved by mathematical induction. For i = 1, the left-hand side 

r;(l - (4'- l ) r ; Z A ~ A l t  = r ~ l ? ~ 2 { r ~  - (4'- I )A\AI]  = 1. 
Assuming that (3.12) is valid for ri, consider the case for ri+l: 

r?+l{l - (q2 - 1) 
i+l 

I'F.,rFZAfAk1 = r;+l{rr2 - (4' - l ) r ~ 2 r ' ~ l A ~ + l A i + l )  
k=l 

= r;z{r;+l - (q2 - l)Af+,A;+l] 
= r,Y2r; = 1. 

The identity (3.12) has been proved. 

is an isomorphism, let us consider (0' : Ay-' + &, defined by 
From (3.6) it is obvious that p is a one-to-one correspondence. In order to show that p 

- 
Ai = l=zlF;'& Af =A!?:' I r - I  I?' I 

and show that p o rp' = p' o rp = 1. To achieve this, it is enough to note the relation 

ri - = 4 7 -  [A, ,  At,] - . ,/r,::lr,-2 . (A Ai + -q2AjAi) = rr', 
Therefore the statement has been proved. 0 

It i s  emphasized that, in the limit of q + 1, both the left- and right-hand sides of (3.6) 
are reduced to the same bosonic oscillators. 

4. q-deformed Lie algebra constructed from 4 
As an application of the scheme provided in the previous section, let us consider the q- 
deformed Lie algebra which is constructed from 4. The bilinear forms of q-creation and 
q-annihilation operators can define a q-deformation of (the universal enveloping algebra of)  
the Lie algebra u(n): 

Eij = AfAj E*. V = Eji. (4.1) 
Using (3.1) the commutation relations among the Eij's are obtained as 

where O ( x )  is a function defined by 
x z o  

(4.3) 
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The derivation of (4.2) is found in the appendix. In terms of the R-matrix, (4.2) is rewritten 
as 

4 R;b,pvR~i,edR,/,enEefEJb - 4-l Rlro.bcRcd.evR;l,,p,EfdEb" 
sbcdcf obedrf 

= q%wx R;b.,$nb - 4-'& x R ; b , & b  - q - ' w c  R~b.,&,,,Ecb 
nb ab uhc 

(4.4) 
where f1 means the transposition in the first space and w = q - q-'. The derivation of 
(4.4) is also sketched in the appendix. The n = 2 case of t h i s  algebra has been discussed 
in [ll].  We can easily see that both (4.2) and (4.4) are reduced to the usual commutation 
relations of u(n) in the l i t  of q + 1: 

[E,", Ep.1 = ~,E, - &qw 

since the R-matrix is reduced to the unit matrix: Rij.kl --f &k8jl. As can be seen from 
(4.2) or (4.4), the obtained algebra is a qua&atic deformation of u(n) and differs from the 
standard Drinfeld-Jimbo deformation. A further difference from the standard deformation, 
as discussed in [ 1 I], is that the algebra describes the central extension of the q-deformation 
of su(n) because the formula u(n) = su(n) (3 u(1) is not valid if q # 1. 

We now adopt (4.2) or (4.4) as the definition of the non-standard q-deformed u(n) and 
we do not use the covariant q-oscillator realization (4.1) hereafter. We shall investigate 
covariance and behaviour under q i+ q-'. The Hopf algebra structure for this q-deformed 
u(n) is still an open problem. 

The algebra (4.4) forms the SU,(n) tensor of rank (1,1), that is, the relation (4.4) is 
preserved by the transformation 

Ejj + Ejj = l;ljl& (4.5) 
XI 

where we assume that Eij commutes with tkl. This can be proved by direct calculation using 
the properties of the R-matrix, i.e. (3.4). the Yang-Baxter equation and Rij.kr = R1k.p. 

We expect from (3.6) and (4.1) that the algebra (4.4) defined for q-' is isomorphic to 
the algebra for q and the isomorphism is given by 

where 8jj denotes the element of the q-deformed u(n) defined for q-l. However, it does 
not hold unless the covariant q-oscillator realization (4.1) is used except in the case of 
n = 2. In order to show this, let us first consider the case of n = 2. For n = 2, (4.2) is 
reduced to 

[E11,E22l=O 

qZEizEzi - EziEiz = (4'- 1)E:l +Eli - Ezz 
and ri (i = 1.2) are restricted to the second expression in (3.8): 

EiiEiz - q2EizEii = En [Ezz, Eizl = -En - (qz - 1)EizEii (4.7) 

rl = Ji + (42 - wI1 rz = Ji + (42 - i ) ( ~ ~ ~  + E ~ ) .  (4.8) 
It is easy to see that E1 I + E22 is a central element of this algebra, therefore, rz is also a 
central element. The non-trivial commutation relations are given by 

riEiz =qEizr i  riEzi =q-'Eziri. (4.9) 
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It can be proved by direct calculation that the isomorphism between two q-deformed u(21 . ,  
defined for q and q-’ is given by (4.6). Here, we give only one example, the last relation 
of (4.8): 

q-2E12E21 - E2&2 = (4-2 - + Ell - Ezz. (4.10) 

After substituting (4.6) into (4.101, we can arrange ri to the left of Ekr by making use of 
(4.9): 

r;2r;2(q2E12Ezl - E ~ ~ E ~ ~ )  = (1 - q2)r;2E;l + - rT2Eu 
where we have dropped the common factor r;’. Multiplying rfr: from the left, we obtain 
the last equation of (4.8). Furthermore, because of (4.6), 

F1 =rrl rz = r;l 
- 

hold. Therefore, the isomorphism has been proved. 
On the other hand, for n > 3, Cy=I Eii is no.longer a central element so that the 

commutation relation between F‘i and EX! becomes quite complicated and the mechanism 
which is used  in^ the proof for the n = 2 case, namely arranging G to the left of Et,. does 
not work. Therefore, (4.6) does not give the expected isomorphism for n 3. 

5. SUq(n/m) covariant q-oscillator system 

The isomorphisms discussed in section 3 can be generalized to the q-oscillator system 
covariant under the quantum super group SU,(n/m). The SU,(n/m) covariant q-oscillator 
system B, ‘is generated by 2n bosonic generators [ A i ,  AI, i = 1,2, . . . , n }  and 2m fermionic 
generators (B,, B,, r = 1,2, . . . , m}. The *-anti-involution of a generator without dagger 
gives the corresponding one with dagger and vice versa. The 2(n + m) generators satisfy 
the defining relations [ll] 

t 

AiAj = q A j A i  i < j 

A ~ A J  = ~ A ! A !  J i # j 

B: = (B!)2 = 0 

and their *-involution. The algebra By can form a rank one tensor of SUy(n/m) under 
the assumption that bosonic generators of E,, commute with all of SU,,(n/m), fermionic 
generators of B, commute with even generators of SU&/m), while they anticommute with 
odd generators of SU,(n/m). The co-action of SU,(n/m) on 0, is defined by 



4560 N Aizawa 

n+m 

j=1 
--f .it' = ~ ( - ) P ( G l l P ( ~ J ) t ? a !  I f  J (5.2) 

where til E SU,(n/m) and we have introduced the unified notation for a,: 
rui = A i  for I < i < n  
ai+n = Bi for 1 < i < m etc 

and p(a)  denotes the parity of operator a, namely p(a)  = 1 for fermionic a or odd a, 
p(u)  = 0 for bosonic a or even a.  

The R-matrix for SU,(n/m) is given by 191 

where p ( i )  denotes the parity of ith basis vector. We prove the following relationship 
between B, and Bq-t. 
Proposition 5.1. There exists an isomorphism (p : 0, + 0, - i  such that p transmutes the 
defining relations of B,-I into those of a,. The explicit formulae are given by 

Ai = rzl r;IAi i t i  = r;' 
& = A;. ,A;~B,  it, = B , ~ A ; ~ ~ A ; '  (5.4) 

where 

A, = JBrB! +q2B!B, A0 = r,. (5.5) 

Proof: As in the case of the SV,(n) covariant q-oscillator, the statement can be proved 
by direct calculations using the commutation relations among rj, A, and the generators of 
B,. Because of the last relation of (S.l), A, (r # 0) can be rewritten as 

(5.6) 

The *-anti-involution does not change A,; A; = A,. Some useful relations can easily be 
shown: 

[ri. &I = [Ar, = 0 
1 4 ,  ri] = [ B j ,  rJ = 0 

AiA, = qArAi AlA, = q-lArA/ (5.7) 
[B,, As] = [ B j ,  A,] = 0 
B A  = q&B, B!A, = q-'&B! fors  > r. 

fors  < r 

It is not difficult to prove thestatement using these relations together with (3.10). As an 
example, we consider the last relation of (5.1). Again, we denote the generators of By-, by 
the operators with a bar: 
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We substitute (5.4) into (5.8). then using (3.9) and (5.7) we obtain 

(5.9) 

Relation (3.12) was used to derive the last line. As is shown later, an analogous identity to 
(3.12) holds: 

Because of this identity, (5.9) can be rewritten 
BJJ + q z ~ ) ~ r  = A; 

Re-arranging BJB,, we obtain the last relation of (5.1). 

of (5.10) reads 
The identity (5.10) is proved by mathematical induction. For r = 1, the left-hand side 

A:{rL2 - (4’ - l)A;ZA,ZB/B~] = rF2(A; - (q2 - l )Bl  t E l ] .  

By definition of A,,  it is obviously reduced to unity. Assuming that (5.10) is valid for Ar,  
consider the case of A,+j : 

=A;~M;+~ - (2 - ~ ) B ! + ~ B , + ~ I  

1 r+l 
*;+I[r;2- ( q 2 - ~ i ) ~ ~ ; : ~ i \ ; ~ ~ , t ~ , ~  =A;+,,IA;z- ( 4 2 -  ~ ) A ; ~ A ; ~ , B ~ + ~ B ~ + ~ I  

$=I 

= 1. 
Therefore, the identity (5.10) has been proved. 

Ai = l?21Fe71& 
B;=1i;!,1?;’& E, t - - p K - 1  I r-l (5.11) 

It can be easily seen that the map (p’ : Bq-t + B,, defined by 

Af = i ? F y 1  L r - I  I 

is the inverse map of (p. because of the relation 
I -  -*-I (5.12) 

0 

It is natural to apply the isomorphism to the q-deformation of the Lie superalgebra 
u(n/m) constructed from f?,. As in the case of the q-deformed u(n) discussed in section 4, 
a trivial extension is not valid, against our expectation. Let us show this in the simplest case, 
namely q-deformed u ( l / l )  [ll]. The generators of qdeformed u ( l / l )  are constructed by 

Q = AtB Q ~ = B ~ A  X = A ~ A  Y = B ~ B .  (5.13) 

This completes the proof of the statement. 

They satisfy the commutation relations 
Q z = O  
X Q - q 2 Q X = Q  Y Q = O  q 2 Q Y = Q + ( q 2 - l ) X Q  [X,Y]=O (5.14) 

q2QQt + q-*Q’Q = X +q-’Y + (q2 - 1)X2 
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and their *-involution. Again, we have obtained a quadratic deformation of a Lie algebra. 
We regard (5.14) as the defining relations of the q-deformed u( l / l )  and do not use the 
realization (5.13) by B, hereafter. According to (5.13), we expect that the q-deformed 
u( l / l )  defined for q-' is isomorphic to the one defined for q; the isomorphism is given by 

= q2r-2x F = q2r-2A-Zy (5.15) 
a ~ qsr-ZA-'Q a t  = qsQtr-2A-l 

where 

r = J1+ (42 - l )X A = J1+ (q2 - 1)(X + Y). (5.16) 

As an example, we consider the second equation of (5.14): 
q-2fjlj'+q2QtQ =f+q2E+(q-2-1)f2.  

Substituting (5.15) into this equation and multiplying q-2r2A2 from the left, we obtain 
qz(QQt + Qt Q) = X + (q2 - 1)X2 Jr q2Y + (q4 - 1)XY. 

The correct equation cannot be derived unless the relation 

q2XY + Y  - QtQ = O  (5.17) 

holds. However, (5.17) does not hold without the aid of the covariant q-oscillator realization 
(5.13). Therefore, we have shown that (5.15) does not give the isomorphism between two 
q-deformed u( l / l )  defined for q and q-'. 

6. Discussion 

In this paper we have shown that, in the case of SU,,(n) and SU,(n/m), the covariant 
q-oscillator systems defined for q are isomorphic to the ones for q-'. The final goal of an 
investigation along the line presented here is to establish relationships between all kinds of 
q-deformed objects defined for q and q-'. This is not easy, but is a challenging problem. 
As was seen in the case of q-deformed Lie algebras, the established isomorphism between 
covariant q-oscillator systems cannot be generalized directly to other q-deformed objects. 
For the q-deformed Lie algebras we will have to re-analyse the isomorphism based on the 
structure of the algebra itself without the aid of covariant q-oscillator realizations. 

We can mention another example, an algebra generated by some copies of a covariant 
q-oscillator system. We require that the mutual commutation relations among various 
copies should also be covariant under the action of a certain quantum group. This 
requirement concludes that generators of a covariant q-oscillator system do not commute 
with their copies, and the commutation relations among various copies becomes non-trivial. 
For example, commutation relations between the SU&) covariant q-oscillator system 
4 = [Ai, Ai] t and its copy [Di, Dl] are given, in terms of the R-matrix, by [12] 

It can be easily verified that (3.6) does not give the isomorphism between the algebra 
generated by [Ai, A!, Di, D!] and the algebra defined for q-', although we do not give 
the proof here. This is due to the additional structure given by (6.1) which we have to take 
into consideration if we wish to establish the isomorphism. 
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One of the most important problems concerning the isomorphism discussed here is the 
relationships between quantum groups defined for q and q-I, e.g. SU&) and SU,,-,(n). 
Unfortunately, the result of this paper does not seem to be applicable to the problem; it will 
be a future work. 

Appendix A. 

The derivation of (4.2) and (4.4) is sketched in this appendix. 

(3.1) can be written using the function @ ( x )  defined in (4.3) as 
Let us first consider (4.2). It should be noted that the first and the second relations in 

W.1) A . A .  - -@(z-j)A.A, ArAj = qO(j-j)AfA! 
I J - q  J '  J 1 '  

Another expression of the last relation of (3.1) is given by 

This can be shown easily by making use of mathematical induction. Combining this with 
the third relation of (3.1), we obtain 

we can re-order EijEkl= A ~ A ~ A ~ A ~  as 

AjAjAfAl  --f AjAiAjAl + AlAjAjAj + ALAlAjAj (A.3) 
using (A.2) for the first and the third processes and (A.l) for the second process. This 
procedure gives us (4.2). 

Next it should be noted that (3.1) can be expressed in terms of the R-matrix: 

A ~ A ~  = f i j  + R ~ ~ , ~ ~ A ~ A ~ .  
kl 

Using (A.5). we again re-order EijEkI in the way of (A.3). After the second process is 
finished, we obtain 

Multiplying by Rpi.pwR;,!akRaj,j~ and summing over the indices i, j ,  k, 1.01 and /L. we 
obtain 
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The second equality corresponds to the third process of (A.3). Applying the Hecke condition 
d2 = od f 1 i i j . k l  = Rj;.ki 

to the second term of (AS), we obtain (4.4). 
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